Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Zebrafish Retina |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Microfluidic Chamber |
… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Technical Drawing: CUY611P3-1 |
|
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Technical Drawing: CUY611P3-1 |
|
|
CUY6111P3-1 |
|
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Photo: CUY611P3-1, P7-2, P7-4, P8-2 |
|
|
LF201 - Electro Cell Fusion Generator |
… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publications by Research Interest |
Eiko Nakahira and Shigeki Yuasa Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation The Journal of Comparative Neurology… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
Eiko Nakahira and Shigeki Yuasa Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation The Journal of Comparative Neurology… |
|
CUY21 Publications by Research Interest |
Eiko Nakahira and Shigeki Yuasa Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation The Journal of Comparative Neurology… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
NEPA21 / CUY21 Publications by Research Interest |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
CUY21 Publications by Research Interest |
Eiko Nakahira and Shigeki Yuasa Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation The Journal of Comparative Neurology… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
NEPA21 / CUY21 Publications by Research Interest |
… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
CUY21 Publications by Research Interest |
Eiko Nakahira and Shigeki Yuasa Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation The Journal of Comparative Neurology… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
Microbubbles for Sonoporation Gene Expression & Gene Transfection |
… |
|
CUY21 Publications by Research Interest |
Eiko Nakahira and Shigeki Yuasa Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation The Journal of Comparative Neurology… |
|
CUY21 Publications by Research Interest |
Eiko Nakahira and Shigeki Yuasa Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation The Journal of Comparative Neurology… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publications by Research Interest |
… |
|
LF201 - Electro Cell Fusion Generator |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
|
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
|
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information. … |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
IntroductionSonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LF201 - Electro Cell Fusion Generator |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
Combined acupuncture and sonoporation for intradermal gene delivery |
Sonoporation or ultrasound-mediated cell membrane permeabilisation is proving to be an effective alternative to viral gene transfer [1].  Because of its non-invasive nature sonoporation also offers a number of advantages over alternative non-viral… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
Cables for Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
Gene transfer into embryonic brains using in utero electroporation technique |
… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
Gene transfer into embryonic brains using in utero electroporation technique |
… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
Electroporation-mediated gene transfer in the adult rat brain |
… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
Electroporation of Xenopus embryo: Gene Delivery into the Primordium Eye at the Neural Plate Stage |
Fig.(1) shows the general setting of the electroporation. Vitelline membrane of the embryo (st.12-13) is usually kept intact. Inject 5-10nl of GFP-mRNA(1µg/µl, 0.05% Fast Green) into intercellular space of upper-few epithelial layers of the neural… |
|
Electroporation of Xenopus embryo: Gene Delivery into the Primordium Eye at the Neural Plate Stage |
Fig.(1) shows the general setting of the electroporation. Vitelline membrane of the embryo (st.12-13) is usually kept intact. Inject 5-10nl of GFP-mRNA(1µg/µl, 0.05% Fast Green) into intercellular space of upper-few epithelial layers of the neural… |
|
Electroporation of Xenopus embryo: Gene Delivery into the Primordium Eye at the Neural Plate Stage |
Fig.(1) shows the general setting of the electroporation. Vitelline membrane of the embryo (st.12-13) is usually kept intact. Inject 5-10nl of GFP-mRNA(1µg/µl, 0.05% Fast Green) into intercellular space of upper-few epithelial layers of the neural… |
|
Electroporation of Xenopus embryo: Gene Delivery into the Primordium Eye at the Neural Plate Stage |
Fig.(1) shows the general setting of the electroporation. Vitelline membrane of the embryo (st.12-13) is usually kept intact. Inject 5-10nl of GFP-mRNA(1µg/µl, 0.05% Fast Green) into intercellular space of upper-few epithelial layers of the neural… |
|
Electroporation of Xenopus embryo: Gene Delivery into the Primordium Eye at the Neural Plate Stage |
Fig.(1) shows the general setting of the electroporation. Vitelline membrane of the embryo (st.12-13) is usually kept intact. Inject 5-10nl of GFP-mRNA(1µg/µl, 0.05% Fast Green) into intercellular space of upper-few epithelial layers of the neural… |
|
Electroporation of Xenopus embryo: Gene Delivery into the Primordium Eye at the Neural Plate Stage |
Fig.(1) shows the general setting of the electroporation. Vitelline membrane of the embryo (st.12-13) is usually kept intact. Inject 5-10nl of GFP-mRNA(1µg/µl, 0.05% Fast Green) into intercellular space of upper-few epithelial layers of the neural… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Protocol for in vivo electroporation into mouse and rat retina |
… |
|
Epidermis-Targeted Gene Transfer Using In Vivo Electroporation |
… |
|
Epidermis-Targeted Gene Transfer Using In Vivo Electroporation |
… |
|
Epidermis-Targeted Gene Transfer Using In Vivo Electroporation |
… |
|
Electroporation-mediated gene transfer system applied to cultured CNS neurons |
(d, e) A mature hippocampal neuron maintained 14 days in dissociated culture after electroporation of a ß-actin-eGFP expression construct. Higher magni¢cation view of the region marked by a rectangle in (d) reveals dendritic spines on the surface of… |
|
Electroporation-mediated gene transfer system applied to cultured CNS neurons |
(d, e) A mature hippocampal neuron maintained 14 days in dissociated culture after electroporation of a ß-actin-eGFP expression construct. Higher magni¢cation view of the region marked by a rectangle in (d) reveals dendritic spines on the surface of… |
|
Electroporation-mediated gene transfer system applied to cultured CNS neurons |
(d, e) A mature hippocampal neuron maintained 14 days in dissociated culture after electroporation of a ß-actin-eGFP expression construct. Higher magni¢cation view of the region marked by a rectangle in (d) reveals dendritic spines on the surface of… |
|
Electroporation-mediated gene transfer system applied to cultured CNS neurons |
(d, e) A mature hippocampal neuron maintained 14 days in dissociated culture after electroporation of a ß-actin-eGFP expression construct. Higher magni¢cation view of the region marked by a rectangle in (d) reveals dendritic spines on the surface of… |
|
Electroporation-mediated gene transfer system applied to cultured CNS neurons |
(d, e) A mature hippocampal neuron maintained 14 days in dissociated culture after electroporation of a ß-actin-eGFP expression construct. Higher magni¢cation view of the region marked by a rectangle in (d) reveals dendritic spines on the surface of… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Gene transfer into single cell by electroporation |
… |
|
Electroporation-mediated gene transfer in the adult rat brain |
… |
|
Electroporation-mediated gene transfer in the adult rat brain |
<!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-1610611985 1107304683 0 0 159 0;} @font-face {… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
Electroporation-mediated gene transfer in the adult rat brain |
<!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-1610611985 1107304683 0 0 159 0;} @font-face {… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(B-E) Time-lapse analysis of neuroepithelial cells in the slice culture system. Histon-EGFP- and DsRed2-expression vectors were co-electroporated into the E12.0 rat spinal cord. The electroporated embryo was cultured for 24 hours in the WEC, then the… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(B-E) Time-lapse analysis of neuroepithelial cells in the slice culture system. Histon-EGFP- and DsRed2-expression vectors were co-electroporated into the E12.0 rat spinal cord. The electroporated embryo was cultured for 24 hours in the WEC, then the… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
<!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-1610611985 1107304683 0 0 159 0;} @font-face {… |
|
Misexpression of the gene of interest by in ovo electroporation |
Mechanisms of brain regionalization and neural circuit formation have been studied by misexpression of transcription factors (En1/2, Pax2/5/6, Otx2, Gbx2), secreted factors (Fgf, Shh, semaphoring), signal transduction molecule (Ras, Sprouty2) and receptors… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(A) EGFP-expression vector was electroporated into E11.5 rat telencephalon. The electroporated embryo was cultured in the whole embryo culture system (WEC). (B) 24 hours after electroporation, EGFP-expression was specifically detected at the dorsal part… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(A) EGFP-expression vector was electroporated into E11.5 rat telencephalon. The electroporated embryo was cultured in the whole embryo culture system (WEC). (B) 24 hours after electroporation, EGFP-expression was specifically detected at the dorsal part… |
|
Misexpression of the gene of interest by in ovo electroporation |
Mechanisms of brain regionalization and neural circuit formation have been studied by misexpression of transcription factors (En1/2, Pax2/5/6, Otx2, Gbx2), secreted factors (Fgf, Shh, semaphoring), signal transduction molecule (Ras, Sprouty2) and receptors… |
|
Misexpression of the gene of interest by in ovo electroporation |
Mechanisms of brain regionalization and neural circuit formation have been studied by misexpression of transcription factors (En1/2, Pax2/5/6, Otx2, Gbx2), secreted factors (Fgf, Shh, semaphoring), signal transduction molecule (Ras, Sprouty2) and receptors… |
|
Knock-down by transfection of shRNA expression vector by electroporation |
(B) Select target DNA sequence of 19 to 21 mer. Sense and antisense sequence were linked to a nucleotide spacer as a loop and put into expression vector that is driven by U6 or H1 promoter. Commercially available expression vector that dreives expression… |
|
Knock-down by transfection of shRNA expression vector by electroporation |
(B) Select target DNA sequence of 19 to 21 mer. Sense and antisense sequence were linked to a nucleotide spacer as a loop and put into expression vector that is driven by U6 or H1 promoter. Commercially available expression vector that dreives expression… |
|
Knock-down by transfection of shRNA expression vector by electroporation |
(B) Select target DNA sequence of 19 to 21 mer. Sense and antisense sequence were linked to a nucleotide spacer as a loop and put into expression vector that is driven by U6 or H1 promoter. Commercially available expression vector that dreives expression… |
|
Knock-down by transfection of shRNA expression vector by electroporation |
(B) Select target DNA sequence of 19 to 21 mer. Sense and antisense sequence were linked to a nucleotide spacer as a loop and put into expression vector that is driven by U6 or H1 promoter. Commercially available expression vector that dreives expression… |
|
Knock-down by transfection of shRNA expression vector by electroporation |
(B) Select target DNA sequence of 19 to 21 mer. Sense and antisense sequence were linked to a nucleotide spacer as a loop and put into expression vector that is driven by U6 or H1 promoter. Commercially available expression vector that dreives expression… |
|
Gene transfer into muscle by In Vivo electroporation |
Electric pulses were delivered using an electric pulse generator (Square Wave Electroporator CUY21EDIT; Nepa Gene Co., Ltd.). Electrodes consisted of a pair of stainless steel needles of 5 mm in length and 0.4 mm in diameter, fixed with a distance (… |
|
Gene transfer into muscle by In Vivo electroporation |
Electric pulses were delivered using an electric pulse generator (Square Wave Electroporator CUY21EDIT; Nepa Gene Co., Ltd.). Electrodes consisted of a pair of stainless steel needles of 5 mm in length and 0.4 mm in diameter, fixed with a distance (… |
|
Gene transfer into muscle by In Vivo electroporation |
Electric pulses were delivered using an electric pulse generator (Square Wave Electroporator CUY21EDIT; Nepa Gene Co., Ltd.). Electrodes consisted of a pair of stainless steel needles of 5 mm in length and 0.4 mm in diameter, fixed with a distance (… |
|
Gene transfer into muscle by In Vivo electroporation |
Electric pulses were delivered using an electric pulse generator (Square Wave Electroporator CUY21EDIT; Nepa Gene Co., Ltd.). Electrodes consisted of a pair of stainless steel needles of 5 mm in length and 0.4 mm in diameter, fixed with a distance (… |
|
Gene transfer into muscle by In Vivo electroporation |
Electric pulses were delivered using an electric pulse generator (Square Wave Electroporator CUY21EDIT; Nepa Gene Co., Ltd.). Electrodes consisted of a pair of stainless steel needles of 5 mm in length and 0.4 mm in diameter, fixed with a distance (… |
|
Chick embryo Electroporation using News culture gastrula |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Chick embryo Electroporation using News culture gastrula |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Chick embryo Electroporation using News culture gastrula |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Cables for Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Cables for Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Chick embryo Electroporation using News culture (gastrula) |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Chick embryo Electroporation using News culture (gastrula) |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Chick embryo Electroporation using News culture gastrula |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Chick embryo Electroporation using News culture gastrula |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Chick embryo Electroporation using News culture gastrula |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Chick embryo Electroporation using News culture gastrula |
GFP gene was introduced to the prospective neural plate at HH4, and the embryo was cultured for about 34 hours (HH17 equivalent). GFP expression was occasionally monitored under a fluorescent dissecting microscope. GFP fluorescence was detectable as… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
In vivo gene transfer into the adult honeybee brain by using electroporation |
C) Schematic representation of the micropipette and electrodes placed in the honeybee brain. Purple indicates micropipette filled with DNA solution, blue indicates electrodes. AN, antennae; C, compound eyes; MB, mushroom bodies; Oc, ocelli; OL, optic… |
|
In vivo gene transfer into the adult honeybee brain by using electroporation |
C) Schematic representation of the micropipette and electrodes placed in the honeybee brain. Purple indicates micropipette filled with DNA solution, blue indicates electrodes. AN, antennae; C, compound eyes; MB, mushroom bodies; Oc, ocelli; OL, optic… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
In vivo gene transfer into the adult honeybee brain by using electroporation |
a) Schematic representation of the micropipette and electrodes placed in the honeybee brain. Purple indicates micropipette filled with DNA solution, blue indicates electrodes. AN, antennae; C, compound eyes; MB, mushroom bodies; Oc, ocelli; OL, optic… |
|
In vivo gene transfer into the adult honeybee brain by using electroporation |
a) Schematic representation of the micropipette and electrodes placed in the honeybee brain. Purple indicates micropipette filled with DNA solution, blue indicates electrodes. AN, antennae; C, compound eyes; MB, mushroom bodies; Oc, ocelli; OL, optic… |
|
In vivo gene transfer into the adult honeybee brain by using electroporation |
a) Schematic representation of the micropipette and electrodes placed in the honeybee brain. Purple indicates micropipette filled with DNA solution, blue indicates electrodes. AN, antennae; C, compound eyes; MB, mushroom bodies; Oc, ocelli; OL, optic… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Small Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information. … |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information. … |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information. … |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
New Electroporator |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information… |
|
ag teacht abhaile200219992*s |
… |
|
ag teacht abhaile200219992*s |
… |
|
ag teacht abhaile200219992*s |
… |
|
ag teacht abhaile200219992*s |
… |
|
ag teacht abhaile200219992*s |
… |
|
ag teacht abhaile200219992*s |
… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information. … |
|
ag teacht abhaile200219992*s |
… |
|
ag teacht abhaile200219992*s |
We are developing a technology to monitor protein synthesis in living cells by transfecting them with fluorescent labeled tRNA. This is planned for commercialization during 2011. We are currently using several of the popular, commercially available reagents… |
|
ag teacht abhaile200219992*s |
We are developing a technology to monitor protein synthesis in living cells by transfecting them with fluorescent labeled tRNA. This is planned for commercialization during 2011. We are currently using several of the popular, commercially available reagents… |
|
ag teacht abhaile200219992*s |
We are developing a technology to monitor protein synthesis in living cells by transfecting them with fluorescent labeled tRNA. This is planned for commercialization during 2011. We are currently using several of the popular, commercially available reagents… |
|
ag teacht abhaile200219992*s |
We are developing a technology to monitor protein synthesis in living cells by transfecting them with fluorescent labeled tRNA. This is planned for commercialization during 2011. We are currently using several of the popular, commercially available reagents… |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information. … |
|
Comparison of the CUY21SC and BTX ECM830 Square Waves at various voltages |
This page is password protected and is provided exclusively for the use of SONIDEL Limited customers who have signed up for membership of the SONIDEL Limited webstie (www.sonidel.com) AND who have specifically requested access to this information. … |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
Electroporation-mediated gene transfer in the adult rat brain |
… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(A) EGFP-expression vector was electroporated into E11.5 rat telencephalon. The electroporated embryo was cultured in the whole embryo culture system (WEC). (B) 24 hours after electroporation, EGFP-expression was specifically detected at the dorsal part… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(B-E) Time-lapse analysis of neuroepithelial cells in the slice culture system. Histon-EGFP- and DsRed2-expression vectors were co-electroporated into the E12.0 rat spinal cord. The electroporated embryo was cultured for 24 hours in the WEC, then the… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(B-E) Time-lapse analysis of neuroepithelial cells in the slice culture system. Histon-EGFP- and DsRed2-expression vectors were co-electroporated into the E12.0 rat spinal cord. The electroporated embryo was cultured for 24 hours in the WEC, then the… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(B-E) Time-lapse analysis of neuroepithelial cells in the slice culture system. Histon-EGFP- and DsRed2-expression vectors were co-electroporated into the E12.0 rat spinal cord. The electroporated embryo was cultured for 24 hours in the WEC, then the… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(B-E) Time-lapse analysis of neuroepithelial cells in the slice culture system. Histon-EGFP- and DsRed2-expression vectors were co-electroporated into the E12.0 rat spinal cord. The electroporated embryo was cultured for 24 hours in the WEC, then the… |
|
Electroporation for mammalian embryos in the whole embryo culture system |
(B-E) Time-lapse analysis of neuroepithelial cells in the slice culture system. Histon-EGFP- and DsRed2-expression vectors were co-electroporated into the E12.0 rat spinal cord. The electroporated embryo was cultured for 24 hours in the WEC, then the… |
|
Electroporation-mediated gene transfer system applied to cultured CNS neurons |
(d, e) A mature hippocampal neuron maintained 14 days in dissociated culture after electroporation of a ß-actin-eGFP expression construct. Higher magni¢cation view of the region marked by a rectangle in (d) reveals dendritic spines on the surface of… |
|
Electroporation-mediated gene transfer system applied to cultured CNS neurons |
(d, e) A mature hippocampal neuron maintained 14 days in dissociated culture after electroporation of a ß-actin-eGFP expression construct. Higher magni¢cation view of the region marked by a rectangle in (d) reveals dendritic spines on the surface of… |
|
Electroporation-mediated gene transfer in the adult rat brain |
… |
|
Electroporation-mediated gene transfer in the adult rat brain |
… |
|
Gene transfer into muscle by In Vivo electroporation |
Electric pulses were delivered using an electric pulse generator (Square Wave Electroporator CUY21EDIT; Nepa Gene Co., Ltd.). Electrodes consisted of a pair of stainless steel needles of 5 mm in length and 0.4 mm in diameter, fixed with a distance (… |
|
Epidermis-Targeted Gene Transfer Using In Vivo Electroporation |
… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Electroporated Transgene-Rescued Spermatogenesis in Infertile Mutant Mice with a Sertoli Cell Defect |
Stereomicroscopic views of transfected testes charged with various voltages and observed under visible (A) or excitation (B) light after 5 wk. Voltage is indicated on each testis (A). Loss of testicular weight 5 wk after electric charge in 12-day-old… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Misexpression of the gene of interest by in ovo electroporation |
Mechanisms of brain regionalization and neural circuit formation have been studied by misexpression of transcription factors (En1/2, Pax2/5/6, Otx2, Gbx2), secreted factors (Fgf, Shh, semaphoring), signal transduction molecule (Ras, Sprouty2) and receptors… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Misexpression of the gene of interest by in ovo electroporation |
Mechanisms of brain regionalization and neural circuit formation have been studied by misexpression of transcription factors (En1/2, Pax2/5/6, Otx2, Gbx2), secreted factors (Fgf, Shh, semaphoring), signal transduction molecule (Ras, Sprouty2) and receptors… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Knock-down by transfection of shRNA expression vector by electroporation |
(B) Select target DNA sequence of 19 to 21 mer. Sense and antisense sequence were linked to a nucleotide spacer as a loop and put into expression vector that is driven by U6 or H1 promoter. Commercially available expression vector that dreives expression… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Method to introduce genes into epithelial cells of the chicken embryonic stomach (proventriculus) |
4. Apply pulses of 30V for 15 times with pulse length of 50ms, and interval time of 75ms. Remove agarose gel immediately and wash it in Tyrode's solution. Then take out the tissues from the gel and wash them well in Tryode's solution. The tissues… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Electroporation of Xenopus embryo: Gene Delivery into the Primordium Eye at the Neural Plate Stage |
Fig.(1) shows the general setting of the electroporation. Vitelline membrane of the embryo (st.12-13) is usually kept intact. Inject 5-10nl of GFP-mRNA(1µg/µl, 0.05% Fast Green) into intercellular space of upper-few epithelial layers of the neural… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
In vivo gene transfer into the adult honeybee brain by using electroporation |
a) Schematic representation of the micropipette and electrodes placed in the honeybee brain. Purple indicates micropipette filled with DNA solution, blue indicates electrodes. AN, antennae; C, compound eyes; MB, mushroom bodies; Oc, ocelli; OL, optic… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
Electrochemotherapy for digital chondrosarcoma |
… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
LTM-1000 : Laser Thermal Microinjector |
Heat-induced expansion of liquid in a sealed capillary generates high pressure, which enables injection by capillaries with the tip diameter around 0.1μm (Knoblauch et al., Nature Biotech., 1999). As the heat source, we chose a laser beam which enables… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
Connector Cables for CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
CUY21 Publications by Research Interest |
… |
|
NEPA21 / CUY21 Publications by Research Interest |
… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
Connector Cables for NEPA21 / CUY21 Electroporator and Electrodes |
If one uses the tweezers-type electrode with the ECM830 the C117 is not required. The C117 is used to hook a needle-type electrode such as the CUY611 series and the CUY613 series. Tweezers-type electrodes such as the CUY650 series have the required… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21_Algae-Transformation_without_cell-wall_removal |
… |
|
NEPA21_Algae-Transformation_without_cell-wall_removal |
… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Initially, the CUY611 series was designed for gene transfection into the neural tube. With the CUY611 series, a pair of electrodes held by an electrode holder CUY580 must be moved downwards in a long vertical line by a manipulator and will be placed… |
|
In Ovo Electroporation |
Initially, the CUY611 series was designed for gene transfection into the neural tube. With the CUY611 series, a pair of electrodes held by an electrode holder CUY580 must be moved downwards in a long vertical line by a manipulator and will be placed… |
|
In Ovo Electroporation |
Initially, the CUY611 series was designed for gene transfection into the neural tube. With the CUY611 series, a pair of electrodes held by an electrode holder CUY580 must be moved downwards in a long vertical line by a manipulator and will be placed… |
|
In Ovo Electroporation |
Initially, the CUY611 series was designed for gene transfection into the neural tube. With the CUY611 series, a pair of electrodes held by an electrode holder CUY580 must be moved downwards in a long vertical line by a manipulator and will be placed… |
|
In Ovo Electroporation |
Initially, the CUY611 series was designed for gene transfection into the neural tube. With the CUY611 series, a pair of electrodes held by an electrode holder CUY580 must be moved downwards in a long vertical line by a manipulator and will be placed… |
|
In Ovo Electroporation |
Initially, the CUY611 series was designed for gene transfection into the neural tube. With the CUY611 series, a pair of electrodes held by an electrode holder CUY580 must be moved downwards in a long vertical line by a manipulator and will be placed… |
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Chicken and Quail Embryo (In Ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10) |
… |
|
Chicken and Quail Embryo (In Ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10) |
… |
|
Chicken and Quail Embryo (In Ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10) |
… |
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Chicken and Quail Embryo (In Ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10) |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
Direct Gene Transfer into Mature Seeds via Electroporation |
Fertile transgenic plants were regenerated and self-fertilized seeds were obtained in rice and wheat. Transgene integration was confirmed by Southern hybridization. Transmission of the transgene into the next generation (T1) was indicated by PCR analysis… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
NEPA21 Electroporator |
The NEPA21 Electroporator is based on the same platform and core technology that made the CUY21EDIT and CUY21SC devices leaders in their class. The NEPA21 can do in one device what each of the EDIT and SC did individually, i.e., it combines BOTH the… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
|
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
In Ovo Electroporation |
The CUY611 series was designed initally for gene transfection into the neural tube. With the CUY611 series, a pair of electrodes held by an electrode holder CUY580 must be moved downwards in a long vertical line by a manipulator and will be placed on… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
(Please note: where a reference is made in the following resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can replicate their exact same output pulse form – in addition to its own multi-pulse and polarity-exchange capability… |
|
In Ovo Electroporation |
(Please note: where a reference is made in the following resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can replicate their exact same output pulse form – in addition to its own multi-pulse and polarity-exchange capability… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
(Please note: where a reference is made in the following resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can replicate their exact same output pulse form – in addition to its own multi-pulse and polarity-exchange capability… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
|
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
Hints and Tips iGONAD Procedure |
Recent progress in of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD); a novel in vivo genome… |
|
Hints and Tips iGONAD Procedure |
Recent progress in of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD); a novel in vivo genome… |
|
Hints and Tips iGONAD Procedure |
Recent progress in of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD); a novel in vivo genome… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
test 1 |
Yuka Nakazawa, Yuichiro Hara, Yasuyoshi Oka, Okiru Komine, Diana van den Heuvel 3, Chaowan Guo 1, Yasukazu Daigaku 4, Mayu Isono, Yuxi He, Mayuko Shimada, Kana Kato, Nan Jia, Satoru Hashimoto, Yuko Kotani, Yuka Miyoshi, Miyako Tanaka, Akira Sobue, Norisato… |
|
|
Yuka Nakazawa, Yuichiro Hara, Yasuyoshi Oka, Okiru Komine, Diana van den Heuvel 3, Chaowan Guo 1, Yasukazu Daigaku 4, Mayu Isono, Yuxi He, Mayuko Shimada, Kana Kato, Nan Jia, Satoru Hashimoto, Yuko Kotani, Yuka Miyoshi, Miyako Tanaka, Akira Sobue, Norisato… |
|
test 1 |
Yuka Nakazawa, Yuichiro Hara, Yasuyoshi Oka, Okiru Komine, Diana van den Heuvel 3, Chaowan Guo 1, Yasukazu Daigaku 4, Mayu Isono, Yuxi He, Mayuko Shimada, Kana Kato, Nan Jia, Satoru Hashimoto, Yuko Kotani, Yuka Miyoshi, Miyako Tanaka, Akira Sobue, Norisato… |
|
|
Yuka Nakazawa, Yuichiro Hara, Yasuyoshi Oka, Okiru Komine, Diana van den Heuvel 3, Chaowan Guo 1, Yasukazu Daigaku 4, Mayu Isono, Yuxi He, Mayuko Shimada, Kana Kato, Nan Jia, Satoru Hashimoto, Yuko Kotani, Yuka Miyoshi, Miyako Tanaka, Akira Sobue, Norisato… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
Free NEPA21 Demo and Trial :-Zygote Electroporation for Transgenic Animal Production |
Compared to other devices on the market, the NEPA21 system offers the researcher a level of previously unavailable control over energy delivery to the electroporation target. This control is generated via unique electroporation pulse-output configurations… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21 Publications |
Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan Touboul, Olivier Pourqui… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21 Publications |
bioRxiv February 25, 2020Margarete Diaz-Cuadros, Daniel E Wagner, Christoph Budjan, Alexis Hubaud, Oscar A Tarazona, Sophia Donelly, Arthur Michaut, Ziad Al Tanoury, Kumiko Yoshioka-Kobayashi, Yusuke Niino, Ryoichiro Kageyama, Atsushi Miyawaki, Jonathan… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publications |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publications |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publications |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publications |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Stem Cells Transl Med. 2021 Jan;10(1):115-127.Takafumi Yumoto, Misaki Kimura, Ryota Nagatomo, Tsukika Sato, Shun Utsunomiya, Natsue Aoki, Motoji Kitaura, Koji Takahashi, Hiroshi Takemoto, Hirotaka Watanabe, Hideyuki Okano, Fumiaki Yoshida, Yosuke Nao… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
NEPA21 Publication List |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Pub new |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|
Test spacing |
Peter Gee, Mandy S Y Lung, Yuya Okuzaki, Noriko Sasakawa, Takahiro Iguchi, Yukimasa Makita, Hiroyuki Hozumi, Yasutomo Miura, Lucy F Yang, Mio Iwasaki, Xiou H Wang, Matthew A Waller, Nanako Shirai, Yasuko O Abe, Yoko Fujita, Kei Watanabe, Akihiro Kagita… |
|