Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Fin Electrode Recommendation |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Zebrafish Brain Electrode Recommendation |
… |
|
Zebrafish Fin Electrode Recommendation |
… |
|
Zebrafish Retina |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Xenopus Tadpole - Tail |
Kindly note that the article titled: ‘Matrix metalloproteinase expression and function during fin regeneration in zebrafish: Analysis of MT1-MMP, MMP2 and TIMP2*.' This article cites the use of the CUY21EDIT electroporator and the CUY650P3 electrode… |
|
Mouse Embryo – Entire Brain |
… |
|
Mouse/Rat Adult – Brain (Cerebellum) |
Alternatively, one could use the CUY567 electrode. It too is a needle electrodes but it cannot be used to inject plasmid. Accordingly, one must first inject genes into the brain and then insert the needle electrodes into the target where the plasmid… |
|
Mouse Embryo – Entire Brain |
… |
|
Mouse/Rat – Knee Joint |
… |
|
Mouse/Rat – Knee Joint |
… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Technical Drawing CUY650P1 |
|
|
Electroporation Protocol; Technical Drawing of CUY651, CUY650P1, P3, CUY650-5, P5, 7, P7 Electrodes and Mouth-controlled Micropipette System Photo |
|
|
Technical Drawing: CUY650P10 |
|
|
Adult Mouse and Rat (In vivo) - Knee Cartilage |
For Adult Mouse and Rat (in vivo) Knee Cartilage applications we recommend the following electrode:
CUY650P5 and CUY650P10
|
|
Photo CUY650P10 |
|
|
Adult Mouse and Rat (In vivo) - Synovial Membrane |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Vessel |
For Adult Mouse and Rat (in vivo) Vessel applications we recommend the following electrode:
CUY250
Â
|
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Forebrain Ventricle (E14) |
… |
|
Photo: CUY650P1-5 |
|
|
Mouse Embryo (In Utero) - Forebrain Ventricle (E14) |
… |
|
Photo: CUY650P1-5 |
|
|
Mouse Embryo (In Utero) - Spinal Cord (E10.5) |
For Mouse Embryo (in utero) Spinal Cord (E10.5) applications we recommend the following electrode:
CUY651P
|
|
Mouse and Rat (Whole Embryo Culture) - Neural Tube (Mouse E9.5, Rat 11.5) |
For Mouse and Rat (whole embryo culture) Neural Tube (Mouse E9.5, Rat 11.5) applications we recommend the following electrode:
CUY520P15, P20, P25
|
|
Mouse and Rat (Whole Embryo Culture) - Neural Plate Metencephalon, Somite (Mouse E7-13) |
For Mouse and Rat (whole embryo culture) Neural Plate Metencephalon, Somite (Mouse E7-13) applications we recommend the following electrode:
CUY520P15, P20, P25
|
|
Mouse and Rat (Whole Embryo Culture) - Telencephalon (Mouse E7-13) |
For Mouse and Rat (whole embryo culture) Telencephalon (Mouse E7-13) applications we recommend the following electrode:
CUY650P3, CUY650P5 CUY650P10
|
|
Photo: CUY650P10 |
|
|
New Born Mouse and Rat (In Vivo) - Retina (P0-P3) |
For New Born Mouse and Rat (in vivo) - Retina (P0-P3) applications we recommend the following electrode:
CUY675P3 CUY675P5
|
|
New Born Mouse and Rat (In Vivo) - Cornea |
For New Born Mouse and Rat (in vivo) - Cornea applications we recommend the following electrode:
CUY670 CUY671P1
|
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Zebrafish Fin |
… |
|
Zebrafish Fin |
… |
|
Mouse Embryo – Entire Brain |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat – Knee Joint |
… |
|
Mouse Embryo – Entire Brain |
… |
|
Mouse Embryo – Entire Brain |
… |
|
Mouse/Rat – Knee Joint |
… |
|
Mouse/Rat Adult – Brain (Cerebellum) |
Alternatively, one could use the CUY567 electrode. It too is a needle electrodes but it cannot be used to inject plasmid. Accordingly, one must first inject genes into the brain and then insert the needle electrodes into the target where the plasmid… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
For Mouse Embryo (in utero) Cerebral Cortex, All Areas (>E13.5) applications we recommend the following electrode:
CUY650P5 and CUY650P7
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (E12.5) |
For Mouse Embryo (in utero) Cerebral Cortex, All Areas (E12.5) applications we recommend the following electrode:
CUY650P3
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
For Mouse Embryo (in utero) Cerebral Cortex, Specific Areas (>E13.5) applications we recommend the following electrode:
CUY650P0.5-3 and CUY650P1-5
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Forebrain Ventricle (E14) |
For Mouse Embryo (in utero) Forebrain Ventricle (E14) applications we recommend the following electrode:
CUY650P1-5
|
|
Zebrafish Brain Electrode Recommendation |
… |
|
Zebrafish Brain Electrode Recommendation |
… |
|
Mouse Embryo (In Utero) - Forebrain Ventricle (E14) |
… |
|
Mouse Embryo (In Utero) - Forebrain Ventricle (E14) |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
Mouse Embryo (In Utero) - Forebrain Ventricle (E14) |
… |
|
Zebrafish Brain |
… |
|
Zebrafish Brain |
… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
NEPA21_In_Vivo_Tumor_EP |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat Adult – Brain (Cerebellum) |
Alternatively, one could use the CUY567 electrode. It too is a needle electrodes but it cannot be used to inject plasmid. Accordingly, one must first inject genes into the brain and then insert the needle electrodes into the target where the plasmid… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Mouse/Rat - Skin |
For your further information, some clients prefer to use the CUY650P electrode series for the same application. The CUY650P series is also a tweezers type electrode but it incorporates disk electrodes. With the CUY650P series, skin is picked up and… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
For Adult Mouse and Rat (in vivo) Liver applications we recommend the following electrode:
CUY650P5
CUY650P10
|
|
Adult Mouse and Rat (In vivo) - Liver |
For Adult Mouse and Rat (in vivo) Liver applications we recommend the following electrode:
CUY650P10
|
|
Adult Mouse and Rat (In vivo) - Liver |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
Adult Mouse and Rat (In vivo) - Testis, Ovary |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Mouse/Rat – Knee Joint |
… |
|
Mouse/Rat Adult – Brain (Cerebellum) |
Alternatively, one could use the CUY567 electrode. It too is a needle electrodes but it cannot be used to inject plasmid. Accordingly, one must first inject genes into the brain and then insert the needle electrodes into the target where the plasmid… |
|
Mouse/Rat – Knee Joint |
… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
NEPA21_In-Vivo_EP-Cerebellum-Pups_between_3-8_days_old |
… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
High-performance and reliable site-directed in vivo genetic manipulation of mouse and rat brain by in utero electroporation with a triple-electrode probe, Joanna Szczurkowska, Andrzej W. Cwetsch, Marco dal Maschio, Diego Ghezzi, Gian Michele… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700P_L type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700P_L type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700P_L type-electrodes in combination with the following electrodes… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Test line spacing |
… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Test line spacing |
… |
|
Test line spacing |
- The finer control over the delivered energy available with the NEPA21 offers specific and important advantages for organoid electroporation. As the thrust of NEPA21 protocols is to minimise delivered energy, this means that the targets are electroporated… |
|
Test line spacing |
- The finer control over the delivered energy available with the NEPA21 offers specific and important advantages for organoid electroporation. As the thrust of NEPA21 protocols is to minimise delivered energy, this means that the targets are electroporated… |
|
Test line spacing |
-Â Â Â Â The finer control over the delivered energy available with the NEPA21 offers specific and important advantages for organoid electroporation. As the thrust of NEPA21 protocols is to minimise delivered energy, this means that the targets are… |
|
Test line spacing |
-Â Â Â Â The finer control over the delivered energy available with the NEPA21 offers specific and important advantages for organoid electroporation. As the thrust of NEPA21 protocols is to minimise delivered energy, this means that the targets are… |
|
Test line spacing |
The finer control over the delivered energy available with the NEPA21 offers specific and important advantages for organoid electroporation. As the thrust of NEPA21 protocols is to minimise delivered energy, this means that the targets are electroporated… |
|
Test line spacing |
The finer control over the delivered energy available with the NEPA21 offers specific and important advantages for organoid electroporation. As the thrust of NEPA21 protocols is to minimise delivered energy, this means that the targets are electroporated… |
|
Test line spacing |
… |
|
Test line spacing |
… |
|
Test line spacing |
… |
|
Test line spacing |
… |
|
Test line spacing |
… |
|
Test line spacing |
… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|
Organoid Electroporation Email |
With this market-leading control and (user-independent) reproducibility of the technique, it is now possible to apply electroporation techniques to applications previously considered too sensitive for electroporation methodologies. One such application… |
|