Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Fin Electrode Recommendation |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Zebrafish Fin Electrode Recommendation |
… |
|
Zebrafish Retina |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Xenopus Tadpole - Tail |
Kindly note that the article titled: ‘Matrix metalloproteinase expression and function during fin regeneration in zebrafish: Analysis of MT1-MMP, MMP2 and TIMP2*.' This article cites the use of the CUY21EDIT electroporator and the CUY650P3 electrode… |
|
Mouse Embryo – Entire Brain |
… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Entire Brain |
… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Technical Drawing CUY650P3 |
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (E12.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
… |
|
Photo: CUY650P3 |
|
|
Mouse Embryo (In Utero) - Spinal Cord (E10.5) |
For Mouse Embryo (in utero) Spinal Cord (E10.5) applications we recommend the following electrode:
CUY651P
|
|
Mouse and Rat (Whole Embryo Culture) - Neural Tube (Mouse E9.5, Rat 11.5) |
For Mouse and Rat (whole embryo culture) Neural Tube (Mouse E9.5, Rat 11.5) applications we recommend the following electrode:
CUY520P15, P20, P25
|
|
Mouse and Rat (Whole Embryo Culture) - Neural Plate Metencephalon, Somite (Mouse E7-13) |
For Mouse and Rat (whole embryo culture) Neural Plate Metencephalon, Somite (Mouse E7-13) applications we recommend the following electrode:
CUY520P15, P20, P25
|
|
Mouse and Rat (Whole Embryo Culture) - Telencephalon (Mouse E7-13) |
For Mouse and Rat (whole embryo culture) Telencephalon (Mouse E7-13) applications we recommend the following electrode:
CUY650P3, CUY650P5 CUY650P10
|
|
Photo: CUY650P3, CUY650P5 |
|
|
New Born Mouse and Rat (In Vivo) - Retina (P0-P3) |
For New Born Mouse and Rat (in vivo) - Retina (P0-P3) applications we recommend the following electrode:
CUY675P3 CUY675P5
|
|
New Born Mouse and Rat (In Vivo) - Cornea |
For New Born Mouse and Rat (in vivo) - Cornea applications we recommend the following electrode:
CUY670 CUY671P1
|
|
New Born Mouse and Rat (In Vivo) - Brain Ventricle (P0-P3) |
For New Born Mouse and Rat (in vivo) - Brain Ventricle (P0-P3) applications we recommend the following electrode:
CUY650P3
CUY650P5
See also:
Brain Ventricle (P4-P8)
|
|
Photo: CUY650P3 |
|
|
Adult Mouse, Rat, Rabbit and Dog (In Vivo) - Skin (Epidermus, Dermus, Hypodermus) |
For Adult Mouse, Rat, Rabbit and Dog (in vivo) - Skin (Epidermus, Dermus, Hypodermus) applications we recommend the following electrodes:
CUY663 series
|
|
Chick Embryo (Organ Culture) - Digestive Organ Epithelial Cell (HH Stage 3-7) |
For Chick Embryo (organ culture) - Digestive Organ Epithelial Cell (HH Stage 3-7) applications we recommend the following electrode:
CUY520P5
|
|
Chick Embryo (New Culture) - Gastrulation, Neural Plate (HH Stage 3-7) |
For Chick Embryo (new culture) - Gastrulation, Neural Plate (HH Stage 3-7) applications we recommend the following electrodes:
CUY701 seris (pair)
|
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Bee (In Vivo) |
For Bee (in vivo) - Brain applications we recommend the following electrode:
CUY567
|
|
Silkworm - Egg |
For Silkworm - Egg applications we recommend the following electrode:
CUY495P10
|
|
Xenopus Embryo (In Vivo) - Stage 12.5 |
For Xenopus Embryo (in vivo) - Stage 12.5 applications we recommend the following electrodes:
CUY700P20E, P20L CUY195P0.3
|
|
Plant (In Vivo) - Seed Embryo |
For Plant (in vivo) - Seed Embryo applications we recommend the following electrode:
CUY495P10
|
|
Tissue Fragment (Ex Vivo) - Brain Slice |
For Tissue Fragment (ex vivo) - Brain Slice applications we recommend the following electrode:
CUY701 series
|
|
Tissue Fragment (Ex Vivo) - Tissue Slice |
For Tissue Fragment (ex vivo) - Brain Slice applications we recommend the following electrode:
CUY701 series
|
|
Tissue Fragment (Ex Vivo) - Skin Slice |
For Tissue Fragment (ex vivo) - Brain Slice applications we recommend the following electrode:
CUY701 series
|
|
Adult Mouse, Rat, Rabbit, Dog and Monkey (DNA Vaccine) |
… |
|
Photo:CUY650P3, P5 |
|
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Zebrafish Fin |
… |
|
Zebrafish Fin |
… |
|
Mouse Embryo – Entire Brain |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
|
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
In Utero Electroporation |
As evident from the review by H Tabata and K Nakajima in their book ‘Electroporation and Sonoporation in Developmental Biology’, (Chapter 14, In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons, p 143 – 152), the optimal… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Mouse Embryo – Entire Brain |
… |
|
Mouse Embryo – Entire Brain |
… |
|
Bee (In Vivo) |
For Bee (in vivo) - Brain applications we recommend the following electrode:
CUY567
|
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
Gene transfer into embryonic brains using in utero electroporation technique |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
Gene transfer into embryonic brains using in utero electroporation technique |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
Gene transfer into embryonic brains using in utero electroporation technique |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
Gene transfer into embryonic brains using in utero electroporation technique |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
New Born Mouse and Rat (In Vivo) - Brain Ventricle (P0-P3) |
For New Born Mouse and Rat (in vivo) - Brain Ventricle (P0-P3) applications we recommend the following electrode:
CUY650P3
CUY650P5
See also:
Brain Ventricle (P4-P8)
|
|
New Born Mouse and Rat (In Vivo) - Brain Ventricle (P0-P3) |
For New Born Mouse and Rat (in vivo) - Brain Ventricle (P0-P3) applications we recommend the following electrode:
CUY650P3
CUY650P5
See also:
Brain Ventricle (P4-P8)
|
|
New Born Mouse and Rat (In Vivo) - Brain Ventricle (P0-P3) |
For New Born Mouse and Rat (in vivo) - Brain Ventricle (P0-P3) applications we recommend the following electrode:
CUY650P3 CUY650P5
|
|
New Born Mouse and Rat (In Vivo) - Brain Ventricle (P4-P8) |
For New Born Mouse and Rat (in vivo) - Brain Ventricle (P4-P8) applications we recommend the following electrode:
CUY650P7
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
For Mouse Embryo (in utero) Cerebral Cortex, All Areas (>E13.5) applications we recommend the following electrode:
CUY650P5 and CUY650P7
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (E12.5) |
For Mouse Embryo (in utero) Cerebral Cortex, All Areas (E12.5) applications we recommend the following electrode:
CUY650P3
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (E12.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
For Mouse Embryo (in utero) Cerebral Cortex, Specific Areas (>E13.5) applications we recommend the following electrode:
CUY650P0.5-3 and CUY650P1-5
|
|
Mouse Embryo (In Utero) - Cerebral Cortex, Specific Areas (>E13.5) |
… |
|
Mouse Embryo (In Utero) - Forebrain Ventricle (E14) |
For Mouse Embryo (in utero) Forebrain Ventricle (E14) applications we recommend the following electrode:
CUY650P1-5
|
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Gene transfer into embryonic brains using in utero electroporation technique |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
Adult Mouse, Rat, Rabbit and Dog (In Vivo) - Skin (Epidermus, Dermus, Hypodermus) |
For Adult Mouse, Rat, Rabbit and Dog (in vivo) - Skin (Epidermus, Dermus, Hypodermus) applications we recommend the following electrodes:
CUY663 series
|
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Chicken and Quail Embryo (In Ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10) |
… |
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Chicken and Quail Embryo (In Ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10) |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zeebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (E12.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (E12.5) |
… |
|
Mouse Embryo (In Utero) - Cerebral Cortex, All Areas (>E13.5) |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
|
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
In_Utero-Mouse_Embryo-Cortex-Cerebellum- E12.5 |
… |
|
|
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
In Utero Electrode Recommendation |
… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21 / CUY21 Illustrated Applications |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
Hints and Tips iGONAD Procedure |
Recent progress in of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD); a novel in vivo genome… |
|
Hints and Tips iGONAD Procedure |
Recent progress in of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD); a novel in vivo genome… |
|
Hints and Tips iGONAD Procedure |
Recent progress in of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD); a novel in vivo genome… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
For your information:With respect to gene delivery into Mouse Embryo Eye (and Brain) one can use the tungsten needle type electrode. However, as the mouse embryo is very small it is often hard to inject DNA into the embryo's eye.Some clients have reported… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Mouse Embryo – Eye |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|