Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Zebrafish Retina |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Technical Drawing CUY701P2E |
|
|
Technical Drawing: CUY701 series |
|
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Chick Embryo (New Culture) - Gastrulation, Neural Plate (HH Stage 3-7) |
For Chick Embryo (new culture) - Gastrulation, Neural Plate (HH Stage 3-7) applications we recommend the following electrodes:
CUY701 seris (pair)
|
|
Photo: CUY701P20E and L |
|
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Tissue Fragment (Ex Vivo) - Brain Slice |
For Tissue Fragment (ex vivo) - Brain Slice applications we recommend the following electrode:
CUY701 series
|
|
Photo: CUY701P20E, P20L |
|
|
Photo: CUY701P20E, P20L |
|
|
Tissue Fragment (Ex Vivo) - Tissue Slice |
For Tissue Fragment (ex vivo) - Brain Slice applications we recommend the following electrode:
CUY701 series
|
|
Tissue Fragment (Ex Vivo) - Skin Slice |
For Tissue Fragment (ex vivo) - Brain Slice applications we recommend the following electrode:
CUY701 series
|
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
|
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
Mouse – Tissue/Brain Slice |
… |
|
Mouse – Tissue/Brain Slice |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21 Publications by Research Interest |
… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The CUY21SC measures and displays the delivered current immediately after an EP event. This data is crucial to enable the researcher to verify (on the basis of V=IR) that the correct electroporation protocol has been delivered. As the CUY21SC can measure… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Small Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse – Tissue/Brain Slice |
… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Mouse and Rat Small Tissue Electrode Recommendation and Protocol |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Zebrafish Retina Electrode Recommendation |
For Larval Zebrafish Retina (which is quite small, 10microns) it may not be possible to inject DNA buffer.  Accordingly, we suggest that electroporation is performed after the larval zebrafish eye is taken out. Once this is done and one intends… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
The resistance of an EP target varies according to physical experimental factors such as the volume of the sample, the buffer used and the distance between the electrodes. Fluctuations in resistance impact on delivered current values and this negatively… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21SC - Square Wave Electroporator |
Because in vivo impedance (electrical resistance) is generally less stable than in vitro impedance, an accurate measurement of the target sample resistance prior to the electroporation event is the most important critical success factor for accurate… |
|
CUY21 Publication List, Electrode Recommendations and Protocol Information |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the hole… |
|
NEPA21_Retina_EP |
NEPA21 Retina EP
Ex Vivo EP
Â
Â
|
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
NEPA21 Retina EP
Ex Vivo EP
Â
Â
|
|
NEPA21_Retina_EP |
… |
|
NEPA21_Retina_EP |
… |
|
NEPA21_Retina_EP |
… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
 Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEP21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
… |
|
NEPA21, CUY21SC and CUY21EDIT Multiple Applications and Electrode Recommendations |
A 2 cm midline incision is then made in the abdominal wall along the linea alba using a set of forceps and scissors. A piece of sterile gauze with a hole cut in the center is placed over the incision, and one uterine horn is drawn out through the… |
|
Electroporation Protocols - In Vitro, In Ovo, In Utero, In Vivo, Ex Vivo and New Culture |
… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Chick and Quail Embryo (in ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10 |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Chicken and Quail Embryo (In Ovo) - Neural Tube, Mesencephalon, Diencephalon (HH* Stage 10) |
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Mouse and Rate Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse/Rat – Muscle |
The first method involves injecting a pair of needle electrodes CUY560-5/-10 into the muscle above skin. Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion… |
|
NEPA21_Retina_EP |
 Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
 Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
 Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
|
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
Mouse/Rat – Muscle |
Since no surgery is involved, the researcher can easily perform electroporation and do so consecutively in a short period of time. In our opinion, this is the best method. However, as the volume of muscle affects the resistance value, and thus, actual… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Rat knockout |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Rat knockout |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Organoid EP |
… |
|
Organoid EP |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
In Ovo Electroporation |
Some clients, however, who have to contend with a large number of samples on a daily basis find it difficult to manipulate a pair of electrodes vertically. Such clients prefer to move the pair of electrodes horizontally. The CUY613 series was designed… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Cultured Mouse Embryos and Large Tissue |
For smaller tissue of less than 0.5mm, we do not recommend the CUY520 series. The reason for this is practical; most clients want to minimize the required volume of DNA as much as possible and do not want to waste DNA. For such applications we believe… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
Adult Mouse and Rat (In vivo) - Liver |
Zang  et al.Inhibition  of  nuclear  delivery  of  plasmid  DNA  and  transcription  by  interferon  γ: hurdles to be overcome for sustained gene  therapy.Gene  Ther. 2011 Sep;18(9):891-7. doi: 10.1038/gt.2011.35. Epub 2011 Mar 31… |
|
|
Please also note the following links and attached articles for further information on the NEPA21’s In Ovo capacity. (Please note where a reference is made in the resource material to the CUY21 systems (EDIT or SC), the NEPA21 replaces them and can… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
Organoid EP |
… |
|
Organoid EP |
… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Mouse and Rat Tissue and Brain Slice |
… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Zebrafish_Electroporation |
Please note the Zebrafish video referred to above demonstrates the NEPA21 technique used in the article: ‘Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development (Katie E. Holmes1… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
Organoid EP |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
NEPA21_Retina_EP |
Arrangement of electrodes for in vivo electroporation for RPE transfection.(A) Tweezer-type electrodes were placed on the corneal surface of either eye of a 1-month-old Sprague-Dawley rat.(B) The current was applied with the positive electrode contralateral… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
High-performance and reliable site-directed in vivo genetic manipulation of mouse and rat brain by in utero electroporation with a triple-electrode probe, Joanna Szczurkowska, Andrzej W. Cwetsch, Marco dal Maschio, Diego Ghezzi, Gian Michele… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700P_L type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700PL type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700P_L type-electrodes in combination with the following electrodes… |
|
Postnatal_Cerebellum_EP_with_the_CUY699P7x6 |
However, our preferred and recommended electrode configuration for postnatal cerebellum electroporation does not combine three electrodes in an awkward single unit but instead uses our CUY700P_L type-electrodes in combination with the following electrodes… |
|
Rat knockout |
o   Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 week. Isolated intestinal crypts to be expanded for over a year with the addition of essential growth factors and after embedding… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|
NEPA21_Retina_EP |
(B) The current was applied with the positive electrode contralateral to the injected eye. After prior injection of plasmid DNA into the subretinal space of the right eye, this arrangement electrophoresed the negatively-charged DNA toward the RPE layer… |
|